# Analog Electronics ENEE236 

Instructor: Nasser Ismail

## L8- DC Biasing - BJTs

## Example

- Assume $\mathrm{V}_{\mathrm{CE}(\text { (sat) })} 0.2 \mathrm{~V}$
- Find mode of operation of Q1?



## Determine Mode of Operation of BJT?

- Solution:
- 1) Since BE junction is forward biased ==> Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in Active Mode

$$
\begin{aligned}
& 5=200 \mathrm{k} \Omega \cdot \mathrm{I}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}}+2 \mathrm{k} \Omega \cdot \mathrm{I}_{\mathrm{E}} \\
& \text { But, } \\
& \text { Solve for } \mathrm{I}_{\mathrm{B}}=\frac{5(1+\beta) \mathrm{I}_{\mathrm{B}}}{200 \mathrm{k} \Omega+(1+\beta) .2 \mathrm{k} \Omega} \\
& \mathrm{I}_{\mathrm{B}}=\frac{5-\mathrm{V}_{\mathrm{BE}}}{200 \mathrm{k} \Omega+(1+100) .2 \mathrm{k} \Omega} \\
& =\frac{4.3 \mathrm{~V}}{402 \mathrm{k} \Omega}=10.7 \mu \mathrm{~A}
\end{aligned}
$$



$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}} \\
& =(100) \cdot(10.7 \mu \mathrm{~A}) \\
& =1.07 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{E}}=(\beta+1) \mathrm{I}_{\mathrm{B}} \\
& =1.0807 \mathrm{~mA}
\end{aligned}
$$

Now we find $\mathrm{V}_{\mathrm{CE}}$ from output circuit

$$
\begin{aligned}
& 10-\mathrm{I}_{\mathrm{C}} .3 \mathrm{k} \Omega-\mathrm{I}_{\mathrm{E}} \cdot 2 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{CE}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{CE}}=4.63 \mathrm{~V}>\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}
\end{aligned}
$$


$\therefore \mathrm{Q} 1$ is in active mode and the assumption is true we can also verify that the BC junction is reverse biassed which is required so that the BJT operates in active mode

$$
\begin{aligned}
& 10-\mathrm{I}_{\mathrm{C}} \cdot 3 \mathrm{k} \Omega-\mathrm{I}_{\mathrm{E}} \cdot 2 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{CE}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CB}}-\mathrm{V}_{\mathrm{EB}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{CB}}=\mathrm{V}_{\mathrm{CE}}-\mathrm{V}_{\mathrm{BE}}=4.63-0.7=3.93 \mathrm{~V} \\
& \therefore \mathrm{~V}_{\mathrm{BC}}=-\mathrm{V}_{\mathrm{CB}}=-3.33 \mathrm{~V}
\end{aligned}
$$

$B C$ junction is reverse biased


- Solution:
- 1) Since $B E$ junction is forward biased $==>$ Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in saturation mode:
$10-\mathrm{I}_{\mathrm{C}(\text { sat })} \cdot 3 \mathrm{k} \Omega-\mathrm{I}_{\mathrm{E}(\text { sat })} \cdot 2 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{CE}(\text { Sat })}$
assume $\quad I_{E(\text { sat })}=I_{C(s a t)}$
$\therefore \mathrm{I}_{\mathrm{C}(\text { (aat })}=\frac{10-0.2}{5 \mathrm{k} \Omega}=1.96 \mathrm{~mA}$
$I_{B(\text { min })}=\frac{I_{C(\text { sat })}}{\beta}=19.6 \mu \mathrm{~A}$
Now we find the actual value of IB
$\mathrm{I}_{\text {Bactual) }}=10.7 \mu \mathrm{~A}$ (it was found previously)
since
$\mathrm{I}_{\mathrm{B} \text { (actual) }}<\mathrm{I}_{\mathrm{B}(\text { sat })}=\mathrm{I}_{\mathrm{B}(\text { min })} \Rightarrow$ the assumption made earlier that BJT in saturation mode is wrong, and actually it is in active mode



## Biasing

Biasing: Applying DC voltages to a transistor in order to establish fixed level of voltage and current. For Amplifier (active/Linear) mode, the resulting dc voltage and current establish the operation point to turn it on so that it can amplify AC signals.

## Operating Point

The DC input establishes an operating or quiescent point called the $Q$-point.


## The Three Operating Regions

Active or Linear Region Operation

- Base-Emitter junction is forward biased
- Base-Collector junction is reverse biased

Cutoff Region Operation

- Base-Emitter junction is reverse biased


## Saturation Region Operation

- Base-Emitter junction is forward biased
- Base-Collector junction is forward biased


## DC Biasing Circuits

1. Fixed-bias circuit
2. Emitter-stabilized bias circuit
3. DC bias with voltage feedback
4. Voltage divider bias circuit

## 1)Fixed Bias Configuration



DC equivalent circuit
$\mathrm{f}=0 \Rightarrow \mathrm{Xc}=\frac{1}{2 \pi f C} \cong \infty$ (open circuit)
input 0
signal


## The Base-Emitter Loop

From Kirchhoff's voltage law for Input:

$$
+V_{C C}-I_{B} R_{B}-V_{B E}=0
$$

Solving for base current:

$$
I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}
$$



Choosing Re will establish the required level of lв

## Collector-Emitter Loop

## Collector current:

$$
I_{C}=\beta I_{B}
$$

From Kirchhoff's voltage law:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \\
& \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}}
\end{aligned}
$$

$$
\text { Since } \mathrm{V}_{\mathrm{E}}=0 \Longleftrightarrow \therefore \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}
$$

$$
\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}
$$

Also

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{B}}-V_{E} \\
& \therefore \mathrm{~V}_{\mathrm{BE}}=\mathrm{V}_{B}
\end{aligned}
$$



## Saturation

When the transistor is operating in saturation, current through the transistor is at its maximum possible value.

$$
I_{C s a t}=\frac{v_{C C}}{R_{C}}
$$

$$
V_{C E}=V_{C E(\text { sat })} \cong 0 V
$$

## Load Line Analysis

The load line end points are:
$I_{\text {Csat }}$

$$
\begin{aligned}
& I_{C}=V_{C C} / R_{C} \\
& V_{C E}=0 \mathrm{~V}
\end{aligned}
$$

$\mathrm{V}_{\text {CEcutoff }}$

$$
\begin{aligned}
& V_{C E}=V_{C C} \\
& I_{C}=0 \mathrm{~mA}
\end{aligned}
$$



The $Q$-point is the operating point where the value of $R_{B}$ sets the value of $I_{B}$ that controls the values of $V_{C E}$ and $I_{C}$

## The Effect of $V_{c c}$ on the Q-Point



## The Effect of $\boldsymbol{R}_{\boldsymbol{C}}$ on the Q-Point



## The Effect of $I_{B}$ on the Q-Point



## Design: Fixed bias

Assume $\mathrm{VCC}=10 \mathrm{~V}, \beta_{\text {nominal }}=100, \beta_{\text {min }}=50, \beta_{\text {max }}=150$
Design for Q -point : $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$

## Solution

$$
\begin{aligned}
I_{B Q} & =\frac{I_{C Q}}{\beta_{\text {nominal }}}=\frac{1 \mathrm{~mA}}{100}=10 \mu \mathrm{~A} \\
\mathrm{I}_{\mathrm{B}} & =\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}} \Rightarrow \\
\mathrm{R}_{\mathrm{B}} & =\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{B}}}=\frac{10-0.7}{10 \mu \mathrm{~A}} \\
& =930 \mathrm{k} \Omega \\
\mathrm{~V}_{\mathrm{CE}} & =\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \\
\mathrm{~V}_{\mathrm{CEQ}} & =5=10-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}
\end{aligned}
$$

$$
\therefore \mathrm{R}_{\mathrm{C}}=\frac{5}{1 \mathrm{~mA}}=5 \mathrm{k} \Omega
$$

## Fixed bias Stability

Assume $\mathrm{VCC}=10 \mathrm{~V}, \beta_{\text {nominal }}=100, \beta_{\text {min }}=50, \beta_{\text {max }}=150$
Design for Q - point : $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$
Solution - continued

$$
\begin{aligned}
& \text { If } \beta=\beta_{\min }=50 \\
& \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=(50)(10 \mu \mathrm{~A})=0.5 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \\
& \mathrm{~V}_{\mathrm{CEQ}}=10-(0.5 \mathrm{~mA})(5 \mathrm{k} \Omega)=7.5 \mathrm{~V} \\
& \text { If } \beta=\beta_{\max }=150 \\
& \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=(150)(10 \mu \mathrm{~A})=1.5 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \\
& \mathrm{~V}_{\mathrm{CEQ}}=10-(1.5 \mathrm{~mA})(5 \mathrm{k} \Omega)=2.5 \mathrm{~V}
\end{aligned}
$$


for
$50 \leq \beta \leq 150$
$\mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$ fixed
$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{C}} \leq 1.5 \mathrm{~mA}$
$7.5 \mathrm{~V} \geq \mathrm{V}_{\mathrm{CE}} \geq 2.5 \mathrm{~V}$
$\therefore \frac{\mathrm{I}_{\mathrm{C}(\text { max })}}{\mathrm{I}_{\mathrm{C}(\text { min })}}=\frac{1.5 \mathrm{~mA}}{0.5 \mathrm{~mA}}=3 \quad \begin{aligned} & \text { Not very } \\ & \text { stable }\end{aligned}$

## 2) Emitter-Stabilized Bias Circuit

Adding a resistor ( $R_{E}$ ) to the emitter circuit stabilizes the bias circuit.


## Base-Emitter Loop

From Kirchhoff's voltage law:

$$
+V_{C C}-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=0
$$

Since $I_{E}=(\beta+1) / /_{B}$ :

$$
V_{C C}-I_{B} R_{B}-V_{B E}-(\beta+1) I_{B} R_{E}=0
$$

Solving for $\mathrm{I}_{\mathrm{B}}$ :

$$
I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}
$$


$(\beta+1) R_{E} \leftarrow$ is the emitter resistor as it appears in the base emitter loop

## Base-Emitter Loop

Solving for $\mathrm{I}_{\mathrm{E}}$ :

$$
I_{E}=\frac{V_{C C}-V_{B E}}{\frac{R_{B}}{(\beta+1)}+R_{E}}
$$

In order to get IE almost independant of B we choose :

$$
\begin{aligned}
& R_{E} \gg \frac{R_{B}}{(\beta+1)} \\
& \quad \Rightarrow I_{E} \cong \frac{V_{C C}-V_{B E}}{R_{E}}
\end{aligned}
$$

Also, in order to guarantee operation in linear mode we choose $0.1 \mathrm{~V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{E}}<0.2 \mathrm{~V}_{\mathrm{CC}}$

## Collector-Emitter Loop

From Kirchhoff's voltage law:

$$
I_{E} R_{E}+V_{C E}+I_{C} R_{C}-V_{C C}=0
$$

Since $I_{E} \cong I_{C}$ :

$$
V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

Also:

$$
\begin{aligned}
& V_{E}=I_{E} R_{E} \\
& V_{C}=V_{C E}+V_{E}=V_{C C}-I_{C} R_{C} \\
& V_{B}=V_{C C}-I_{R} R_{B}=V_{B E}+V_{E}
\end{aligned}
$$



## Design: Emitter Stabilization bias

Assume VCC $=10 \mathrm{~V}, \beta_{\text {nominal }}=100, \beta_{\text {min }}=50, \beta_{\text {max }}=150$
Design for Q - point : $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$
Solution

- let $V_{E}=0.1 \mathrm{~V}_{\mathrm{CC}}$
$\mathrm{V}_{\mathrm{E}}=1 \mathrm{~V}$
$I_{E}=\frac{\mathrm{V}_{\mathrm{E}}}{R_{E}} \Rightarrow R_{E}=\frac{1 \mathrm{~V}}{1.01 \mathrm{~mA}} \cong 1 \mathrm{k} \Omega$
$I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}} \Rightarrow$
$\mathrm{R}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{B}}(\beta+1) \mathrm{R}_{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}$
$R_{B}=\frac{V_{C C}-V_{B E}-I_{B}(\beta+1) R_{E}}{I_{B}}$
$=\frac{10-0.7-10 \mu \mathrm{~A}(100+1) 1 \mathrm{k} \Omega}{10 \mu \mathrm{~A}}$
$=829 \mathrm{k} \Omega$

$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}}$
$\mathrm{V}_{\text {CEQ }}=5=10-1-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}$
$\therefore \mathrm{R}_{\mathrm{C}}=\frac{4}{1 \mathrm{~mA}}=4 \mathrm{k} \Omega$


## Emitter bias Stability

$$
\begin{aligned}
& \text { If } \beta=\beta_{\text {min }}=50 \\
& \mathrm{I}_{\mathrm{B}}=\frac{9.3}{829 \mathrm{k} \Omega+51 \mathrm{k} \Omega}=10.56 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=(50)(10.56 \mu \mathrm{~A})=0.528 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}} \\
& \mathrm{~V}_{\mathrm{CEQ}}=10-(0.528 \mathrm{~mA})(4 \mathrm{k} \Omega)-1=6.89 \mathrm{~V}
\end{aligned}
$$

If $\beta=\beta_{\text {max }}=150$
$I_{B}=\frac{9.3}{829 k \Omega+151 k \Omega}=9.489 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=(150)(9.489 \mu \mathrm{~A})=1.423 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}}$
$\mathrm{V}_{\text {CEQ }}=10-(1.423 \mathrm{~mA})(4 \mathrm{k} \Omega)-1=3.31 \mathrm{~V}$

for
$50 \leq \beta \leq 150$
$10.56 \mu \mathrm{~A} \geq \mathrm{I}_{\mathrm{B}} \geq 9.489 \mu \mathrm{~A}$
$0.528 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{C}} \leq 1.423 \mathrm{~mA}$
$6.89 \mathrm{~V} \geq \mathrm{V}_{\mathrm{CE}} \geq 3.31 \mathrm{~V}$
$\therefore \frac{\mathrm{I}_{\mathrm{C}(\max )}}{\mathrm{I}_{\mathrm{C}(\min )}}=\frac{1.423 \mathrm{~mA}}{0.528 \mathrm{~mA}} \cong 2.7$
Improved, but not very stable

## Improved Biased Stability

Stability refers to a condition in which the currents and voltages remain fairly constant over a wide range of temperatures and transistor Beta ( $\beta$ ) values.

Adding $R_{E}$ to the emitter improves the stability of a transistor.

## Saturation Level



The endpoints can be determined from the load line.
$\begin{array}{ll}\mathrm{V}_{\text {CEcutoff: }}: & V_{C E}=V_{C C} \\ & I_{C}=0 \mathrm{~mA}\end{array}$

$$
V_{C E}=0 \mathrm{~V}
$$

Csat

$$
I_{C}=\frac{V_{C C}}{R_{C}+R_{E}}
$$

## 3) DC Bias With Voltage Feedback

Another way to improve the stability of a bias circuit is to add a feedback path from collector to base.

In this bias circuit the Q-point is only slightly dependent on the transistor beta, $\beta$.


## Base-Emitter Loop

From Kirchhoff's voltage law:
$\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{L}} \mathrm{R}_{\mathrm{L}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}=0$
$\mathrm{I}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}$
$\mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}$
Solving for $I_{B}$ :
$I_{B}=\frac{V_{C C}-V_{B E}}{R_{L}(\beta+1)+R_{B}}$
$\mathrm{V}_{\mathrm{CC}}=\mathrm{I} . \mathrm{R}_{\mathrm{L}}+\mathrm{V}_{\mathrm{CE}}$
$I=I_{C}+I_{B}$
$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\left(\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}\right) \mathrm{R}_{\mathrm{L}}$
suppose $\beta \uparrow, \mathrm{I}_{\mathrm{B}} \downarrow, \mathrm{I}_{\mathrm{C}}=\uparrow \beta . \mathrm{I}_{\mathrm{B}} \downarrow \cong$ const there is some kind of compensation effect

## Design: Voltage feedback bias

Assume $\mathrm{VCC}=10 \mathrm{~V}, \beta_{\text {nominal }}=100, \beta_{\text {min }}=50, \beta_{\text {max }}=150$
Design for Q -point : $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$
Solution

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}}}{\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}}=\frac{10-5}{1 \mathrm{~mA}+\frac{1 \mathrm{~mA}}{100}} \\
& =4.95 \mathrm{k} \Omega \\
& \mathrm{I}_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{L}}(\beta+1)+\mathrm{R}_{\mathrm{B}}} \\
& \therefore \mathrm{R}_{\mathrm{B}}=430 \mathrm{k} \Omega
\end{aligned}
$$



$$
\begin{array}{ll}
\text { If } \beta=\beta_{\min }=50 & \text { for } \\
\mathrm{I}_{\mathrm{B}}=0.013627 \mathrm{~mA} & 50 \leq \beta \leq 150 \\
\mathrm{I}_{\mathrm{C}}=0.68 \mathrm{~mA} & 0.68 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{C}} \leq 1.19 \mathrm{~mA} \\
\text { If } \beta=\beta_{\max }=150 & \therefore \frac{\mathrm{I}_{\mathrm{C}(\max )}}{\mathrm{I}_{\mathrm{C}(\min )}}=\frac{1.19 \mathrm{~mA}}{0.68 \mathrm{~mA}} \cong 1.75
\end{array} \begin{aligned}
& \text { Better } \\
& \begin{array}{l}
\text { Q-point } \\
\text { stability }
\end{array}
\end{aligned}
$$

## Base-Emitter Bias Analysis

## Transistor Saturation Level

$$
\mathrm{I}_{\mathrm{Csat}}=\mathrm{I}_{\mathrm{Cmax}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{L}}}
$$

Load Line Analysis

Cutoff

$$
\begin{aligned}
& V_{C E}=V_{C C} \\
& I_{C}=0 \mathrm{~mA}
\end{aligned}
$$

## Saturation

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{L}}} \\
& \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}
\end{aligned}
$$

## 4) Voltage Divider Bias

## This is a very stable bias circuit.

The currents and voltages are nearly independent of any variations in $\beta$ if the circuit is designed properly


## Approximate Analysis

Where $I_{B} \ll I_{1}$ and $I_{1} \cong I_{2}$ :

$$
\begin{gathered}
\mathrm{V}_{\mathrm{B}}=\frac{\mathrm{R}_{1} \mathrm{~V}_{\mathrm{CC}}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
V_{E}=V_{B}-V_{B E} \\
\mathrm{I}_{\mathrm{E} \text { (approximante) }}=\frac{\mathrm{V}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}}=\frac{\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{E}}}
\end{gathered}
$$

From Kirchhoff's voltage law:


$$
\begin{aligned}
& V_{C E}=V_{C C}-I_{C} R_{C}-I_{E} R_{E} \\
& I_{E} \cong I_{C} \\
& V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
\end{aligned}
$$

Here we got Ic independent of $\beta$ which provides good Q-point stability

## Exact Analysis

We must try to make $I_{B}$ as close as possible to zero Thevenin Equivalent circuit for the circuit left of the base is done

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{th}}=\frac{\mathrm{R}_{1} \mathrm{~V}_{\mathrm{CC}}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
& \mathrm{R}_{\mathrm{th}}=\mathrm{R}_{1} / / \mathrm{R}_{2}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
& \mathrm{~V}_{\mathrm{th}}=\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{th}}+\mathrm{V}_{\mathrm{BE}}+\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}} \\
& \text { but } \mathrm{I}_{\mathrm{B}}=\frac{\mathrm{I}_{\mathrm{E}}}{\beta+1} \\
& \therefore \mathrm{I}_{\mathrm{E}(\text { exact })}=\frac{\mathrm{V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{BE}}}{\frac{\mathrm{Rth}}{\beta+1}+R_{E}}
\end{aligned}
$$



## Exact Analysis

$\therefore \mathrm{I}_{\mathrm{E}(\text { exact })}=\frac{\mathrm{V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{BE}}}{\frac{\mathrm{Rth}}{\beta+1}+R_{E}}$
if we compare to approximate solution
$\mathrm{I}_{\mathrm{E} \text { (approximate) }}=\frac{\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}}{R_{E}}$
$\Rightarrow$ we must make the quantity $\frac{\mathrm{Rth}}{\beta+1} \ll R_{E}$
Here we got Ic independent of $\beta$

$$
\therefore \quad \text { Rth } \ll(\beta+1) R_{E}
$$

as a rule let $\mathrm{Rth} \ll \frac{(\beta+1) R_{E}}{10}$
or

$$
\text { Rth } \ll \frac{\beta R_{E}}{10}
$$



## Design: Voltage Divider bias

Assume VCC $=10 \mathrm{~V}, \beta_{\text {nominal }}=100, \beta_{\text {min }}=50, \beta_{\text {max }}=150$
Design for Q -point : $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$
Solution
1)let $\mathrm{V}_{\mathrm{E}}=0.1 \mathrm{~V}_{\mathrm{CC}}$
$\mathrm{V}_{\mathrm{E}}=1 \mathrm{~V}$
$I_{E}=\frac{\mathrm{V}_{\mathrm{E}}}{R_{E}} \Rightarrow R_{E}=\frac{1 \mathrm{~V}}{1.01 \mathrm{~mA}} \cong 1 \mathrm{k} \Omega$
2) let $\mathrm{Rth}=\frac{\mathrm{R}_{\mathrm{E}} \cdot \beta_{\text {nominal }}}{50}=\frac{1 \mathrm{k} \Omega \cdot 100}{50}=2 \mathrm{k} \Omega$
3) $V_{C C}=R_{C} I_{C}+I_{E} R_{E}+V_{C E}$
$\mathrm{V}_{\mathrm{CEQ}}=5$
$\therefore \mathrm{R}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}}-\mathrm{V}_{\mathrm{E}}}{1 \mathrm{~mA}}=\frac{10-5-1}{1 \mathrm{~mA}}=4 \mathrm{k} \Omega$

## Design: Voltage Divider bias

Assume VCC $=10 \mathrm{~V}, \beta_{\text {nominal }}=100, \beta_{\text {min }}=50, \beta_{\text {max }}=150$
Design for Q - point : $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$
Solution-continued

$$
\text { 4) } \mathrm{I}_{\mathrm{E}}=\frac{\mathrm{V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{BE}}}{\frac{\mathrm{Rth}}{\beta+1}+R_{E}}
$$

$$
\begin{equation*}
\therefore \mathrm{V}_{\mathrm{th}}=\frac{\mathrm{R}_{1} \mathrm{~V}_{\mathrm{CC}}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\mathrm{I}_{\mathrm{E}}\left(\frac{\mathrm{Rth}}{\beta+1}+R_{E}\right)+\mathrm{V}_{\mathrm{BE}}=1.72 \mathrm{~V}_{\ldots}^{\stackrel{1}{2}} \tag{2}
\end{equation*}
$$

$\mathbf{R}_{\mathrm{th}}=\mathrm{R}_{1} / / \mathrm{R}_{2}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=2 \mathrm{k} \Omega$
solving (1) \& (2) yields:
$\mathrm{R}_{1}=2.42 \mathrm{k} \Omega$
$\mathrm{R}_{2}=11.64 \mathrm{k} \Omega$

## Voltage Divider bias Stability

$$
\begin{aligned}
& \text { If } \beta=\beta_{\min }=50 \\
& \mathrm{I}_{\mathrm{C}}=0.982 \mathrm{~mA} \\
& \text { If } \beta=\beta_{\max }=150 \\
& \mathrm{I}_{\mathrm{C}}=1.0069 \mathrm{~mA}
\end{aligned}
$$

for
$50 \leq \beta \leq 150$
$0.982 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{C}} \leq 1.0067 \mathrm{~mA}$
$\therefore \frac{\mathrm{I}_{\mathrm{C}(\max )}}{\mathrm{I}_{\mathrm{C}(\min )}}=\frac{1.0067 \mathrm{~mA}}{0.982 \mathrm{~mA}} \cong 1.0254 \quad \begin{aligned} & \text { Very good } \\ & \text { Q-point }\end{aligned}$ stability

## Voltage Divider Bias Analysis

## Transistor Saturation Level

$$
I_{C \text { sat }}=I_{\text {Cmax }}=\frac{V_{c C}}{R_{C}+R_{E}}
$$

Load Line Analysis

Cutoff:

$$
\begin{aligned}
& V_{C E}=V_{C C} \\
& I_{C}=0 \mathrm{~mA}
\end{aligned}
$$

## Saturation:

$$
\begin{aligned}
& { }_{C}=\frac{V_{C C}}{R_{C}+R_{E}} \\
& V_{C E}=0 \mathrm{~V}
\end{aligned}
$$

## PNP Transistors

The analysis for pnp transistor biasing circuits is the same as that for npn transistor circuits. The only difference is that the currents are flowing in the opposite direction.

## DC and AC Load Lines

Assume VCC $=18 \mathrm{~V}, \beta=100$ $\mathrm{R}_{\mathrm{B}}=576 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{C}}=3 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{BE}}=0.65 \mathrm{~V}$

FIRST: DC ANALYSIS

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CE}}+\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \\
& \mathrm{I}_{\mathrm{C}}=-\frac{1}{\mathrm{R}_{\mathrm{C}}} \mathrm{~V}_{\mathrm{CE}}+\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{C}}} \Leftarrow \mathrm{I}_{\mathrm{C}}=\mathrm{f}\left(\mathrm{~V}_{\mathrm{CE}}\right)
\end{aligned}
$$

This is a straight line equation

$$
\mathrm{Y}=\mathrm{mX}+\mathrm{b}
$$



$$
\begin{aligned}
& I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{18-0.65}{576 \mathrm{k} \Omega}=30 \mu \mathrm{~A} \\
& I_{C}=\beta I_{B}=3 \mathrm{~mA} \quad \begin{aligned}
V_{C E} & =V_{C C}-I_{C} R_{C}=18-(3 \mathrm{~mA})(3 \mathrm{k} \Omega) \\
& =9 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

$I_{\text {Csat }}$
${ }^{\prime}$ Csat $=\frac{v_{C C}}{R_{C}}$
$V_{C E}=V_{C E(\text { sat })} \cong 0 \mathrm{~V}$
$\mathrm{V}_{\text {CEcutoff }}$

$$
V_{C E(\text { cutoff })}=V_{C C}
$$

$$
I_{C}=0 \mathrm{~mA}
$$

## DC Load Line



## AC Load Line

## AC Equivalent Circuit



Since we have dc and ac quantities,
let us define the notation total DC ac

$$
V_{B E}(t)=\mathrm{V}_{\mathrm{BE}}+v_{b e}
$$

$$
V_{C E}(t)=\mathrm{V}_{\mathrm{CE}}+v_{c e}
$$

$$
I_{C}(t)=\mathrm{I}_{\mathrm{C}}+i_{c}
$$

$$
I_{B}(t)=\mathrm{I}_{\mathrm{B}}+i_{b}
$$

$v_{c e}=-R_{a c} \cdot i_{c}$
where $R_{a c}=R_{c} / / R_{L}$
is the ac resistance seen from collector terminal

+ resistance seen from emitter terminal


## AC Load Line

## AC Equivalent Circuit

$$
\begin{aligned}
& \left(V_{C E}(t)-\mathrm{V}_{\mathrm{CEQ}}\right)=-R_{a c} \cdot\left(I_{C}(t)-\mathrm{I}_{\mathrm{CQ}}\right) \\
& \left(V_{C E}(t)_{\max }-\mathrm{V}_{\mathrm{CEQ}}\right)=R_{a c} \cdot \mathrm{I}_{\mathrm{CQ}} \\
& V_{C E}(t)_{\max }=\mathrm{V}_{\mathrm{CEQ}}+R_{a c} \cdot \mathrm{I}_{\mathrm{CQ}}, \text { when } I_{C}(t)=0 \\
& \left(V_{C E}(t)-\mathrm{V}_{\mathrm{CEQ}}\right)=-R_{a c} \cdot\left(I_{C}(t)-\mathrm{I}_{\mathrm{CQ}}\right) \\
& I_{C}(t)_{\max }=\frac{\mathrm{V}_{\mathrm{CEQ}}}{R_{a c}}+\mathrm{I}_{\mathrm{CQ}} \text { when } V_{C E}(t)=0
\end{aligned}
$$




## AC Load Line

## AC Equivalent Circuit


$v_{c e}=-R_{a c} \cdot i_{c}$
』

$$
\left(V_{C E}(t)-\mathrm{V}_{\mathrm{CEQ}}\right)=-R_{a c} \cdot\left(I_{C}(t)-\mathrm{I}_{\mathrm{CQ}}\right)
$$

To Draw ac load line
Ac load line equation we find $\left.\left(V_{C E}(t)_{\max }\right) \operatorname{and}\left(I_{C}(t)_{\max }\right)\right)$

## Design Criteria

- In order to have the amplifier to amplify an input ac signal without distortion (by going into saturation or cut-off)
- We must choose the Q-point in the middle of ac load line

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{CQ}}=\frac{1}{2} I_{C}(t)_{\text {max }} \\
& \mathrm{V}_{\mathrm{CER}}=\frac{1}{2} V_{\mathrm{CE}}(t)_{\text {max }}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{I}_{\mathrm{CQ}}=I_{C}(t)_{\max } \\
& 2 \mathrm{I}_{\mathrm{CQ}}=\mathrm{I}_{\mathrm{CQ}}+\frac{\mathrm{V}_{\mathrm{CEQ}}}{R_{a c}} \\
& \therefore \mathrm{I}_{\mathrm{CQ}}=\frac{\mathrm{V}_{\mathrm{CEQ}}}{R_{a c}}
\end{aligned}
$$

## DC Analysis

$$
\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CE}}+\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}
$$

$$
\text { define } \mathrm{R}_{\mathrm{dc}}=\mathrm{R}_{\mathrm{C}}
$$

$$
\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CE}}+\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{dc}}
$$

at the Q - point

$$
\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CEQ}}+\mathrm{I}_{\mathrm{CQ}} \mathrm{R}_{\mathrm{dc}}
$$

For maximum Symmetrical swing

$$
\begin{gathered}
\mathrm{I}_{\mathrm{CQ}}=\frac{\mathrm{V}_{\mathrm{CEQ}}}{R_{a c}} \Rightarrow \mathrm{~V}_{\mathrm{CEQ}}=\mathrm{I}_{\mathrm{CQ}} R_{a c} \\
\mathrm{~V}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CQ}} \cdot \mathrm{R}_{a c}+\mathrm{I}_{\mathrm{CQ}} \cdot \mathrm{R}_{\mathrm{dc}} \\
\therefore \mathrm{I}_{\mathrm{CQ}}=\frac{V_{C C}}{\mathrm{R}_{a c}+\mathrm{R}_{d c}}
\end{gathered}
$$

**** To design for maximum Symmetrical Swing

Also

## DC Analysis

$$
\mathrm{V}_{\text {CEQ }}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{CQ}} \mathrm{R}_{\mathrm{dc}}
$$

$$
=\mathrm{V}_{\mathrm{cc}}-\mathrm{R}_{\mathrm{dc}} \frac{V_{c c}}{\mathrm{R}_{a c}+\mathrm{R}_{d c}}
$$

$$
=\mathrm{V}_{\mathrm{cc}}\left(1-\frac{\mathrm{R}_{\mathrm{dc}}}{\mathrm{R}_{a c}+\mathrm{R}_{d c}}\right)
$$

$$
=\mathrm{V}_{\mathrm{cc}}\left(\frac{\mathrm{R}_{a c}+\mathrm{R}_{d c}-\mathrm{R}_{\mathrm{dc}}}{\mathrm{R}_{a c}+\mathrm{R}_{d c}}\right)
$$

$$
=\mathrm{V}_{\mathrm{cc}}\left(\frac{\mathrm{R}_{a c}}{\mathrm{R}_{a c}+\mathrm{R}_{d c}}\right)=\left(\frac{\mathrm{V}_{\mathrm{cc}}}{1+\frac{\mathrm{R}_{d c}}{\mathrm{R}_{a c}}}\right) * * * * * \text { For maximum }
$$

## Design Example

Design the amplifier for maximum symmetrical swing of the collector current? Find the Q-point?
Find the required Value of Rb?
Draw AC and DC load lines
What is the power dissipation of the transistor at the Q-point?


## Solution

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{ac}}=\mathrm{R}_{\mathrm{C}}=1 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{dc}}=\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}=1.5 \mathrm{k} \Omega
\end{aligned}
$$

For Maximum Symmetrical Swing of Ic

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{CQ}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{a c}+\mathrm{R}_{d c}}=\frac{15}{1 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega}=6 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CEQ}}=\frac{\mathrm{V}_{\mathrm{CC}}}{1+\frac{\mathrm{R}_{d c}}{\mathrm{R}_{a c}}}=\frac{15}{1+\frac{1.5 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}}=6 \mathrm{~V} \quad \mathrm{ii}
\end{aligned}
$$

Maximum Swing (peak) of Ic

$\mathrm{I}_{\mathrm{CM}}=\mathrm{I}_{\mathrm{CQ}}=6 \mathrm{~mA}$
Maximum Symmetrical Swing (peak - peak) of Ic
$\mathrm{I}_{\mathrm{CP}-\mathrm{p}}=2 \mathrm{I}_{\mathrm{CQ}}=12 \mathrm{~mA}$

## Solution



Maximum Value of $\mathrm{V}_{\mathrm{CE}}$

$$
\mathrm{V}_{\mathrm{CE}}(\mathrm{t})_{\mathrm{Max}}=\mathrm{I}_{\mathrm{CQ}} \mathrm{R}_{a c}+\mathrm{V}_{\mathrm{CEQ}}=6 \mathrm{~mA} .1 \mathrm{k} \Omega+6=12 \mathrm{~V}
$$

## Example -Continued



## Analysis Example

Given $\mathrm{Rb}=50 \mathrm{k} \Omega$
Find the maximum collector current swing and the Q-point?
Draw AC and DC load lines
What is the power dissipation of the transistor at the Q-point?


$$
\begin{aligned}
& \mathrm{R}_{\mathrm{ac}}=\mathrm{R}_{\mathrm{C}}=1 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{dc}}=\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}=1.5 \mathrm{k} \Omega \\
& \text { Value of } \mathrm{I}_{\mathrm{B}} \text { and } \mathrm{Ic} \\
& \mathrm{I}_{\mathrm{B}}=\frac{4.7-0.7}{\mathrm{R}_{\mathrm{E}}(100+1)+\mathrm{R}_{\mathrm{B}}} \\
& =\frac{4.7-0.7}{500(100+1)+50 \mathrm{k} \Omega} \\
& =40 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{CQ}}=\beta \mathrm{I}_{\mathrm{BQ}}=4 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CEQ}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{CQ}}\left(\mathrm{R}_{\mathrm{C}}+R_{E}\right)=9 \mathrm{~V}
\end{aligned}
$$

Maximum Swing (peak) of Ic

$$
\mathrm{I}_{\mathrm{CM}} \neq \mathrm{I}_{\mathrm{cQ}}, \Rightarrow \mathrm{I}_{\mathrm{CM}}=4 \mathrm{~mA}
$$

Maximum Symmetrical Swing (peak - peak) of Ic
$\mathrm{I}_{\mathrm{CP-P}}=2 \mathrm{I}_{\mathrm{CM}}=8 \mathrm{~mA}$

## Solution

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{t})_{\mathrm{Max}}=\mathrm{I}_{\mathrm{CQ}}+\frac{\mathrm{V}_{\mathrm{CEQ}}}{\mathrm{R}_{a c}}=4 \mathrm{~mA}+\frac{9}{1 \mathrm{k} \Omega}=13 \mathrm{~mA}
$$

## Basic BJT Amplifiers Circuits

## Graphical Analysis

- Can be useful to understand the operation of BJT circuits.
- First, establish DC conditions by finding $I_{B}$ (or $V_{B E}$ )
- Second, figure out the DC operating point for $I_{C}$




Can get a feel for whether the BJT will stay in active region of operation

- What happens if $R_{C}$ is larger or smaller?


## Basic BJT Amplifiers Circuits

## Graphical Analysis

Q-point is centered on the ac load line:


## Basic BJT Amplifiers Circuits

## Graphical Analysis

Q-point closer to cutoff:


## Basic BJT Amplifiers Circuits

Graphical Analysis
Q-point closer to saturation:


## Basic BJT Amplifiers Circuits

## Graphical Analysis




## Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

$\mathrm{I}_{\mathrm{C}}=(125)(63.24 \mu \mathrm{~A})=7.9 \mathrm{~mA}$
$\therefore$ BJT is in Sat. Mode \& Vc $=\mathrm{V}_{\mathrm{CE}(\mathrm{sal})}$

## Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.


$$
\mathrm{I}_{\mathrm{C}(\mathrm{sat})}=\frac{5}{0.82 \mathrm{k} \Omega}=6.1 \mathrm{~mA}
$$

$$
\mathrm{Vo}=\mathrm{V}_{\mathrm{CE}(\mathrm{sat})} \cong 0.2 \mathrm{~V}
$$

## Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.


For $\mathrm{Vi}=0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{B}}=0$
$\therefore$ BJT is in Cut - off Mode \& $\mathrm{Vc}=\mathrm{V}_{\text {CE(cutoff) }}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

