Analog Electronics ENEE236

Instructor: Nasser Ismail

L8- DC Biasing - BJTs

Example

- Assume $V_{CE(sat)=0.2}$ V
- Find mode of operation of $3k\Omega$ Q1?

Determine Mode of Operation of BJT?

- Solution:
- 1) Since BE junction is forward biased ==> Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in Active Mode

 $5 = 200 \text{ k}\Omega \cdot I_{\text{B}} + V_{\text{BE}} + 2 \text{ k}\Omega \cdot I_{\text{E}}$ But, $I_{\text{E}} = (1 + \beta)I_{\text{B}}$

Solve for I_B =
$$\frac{5 - V_{BE}}{200 \text{ k}\Omega + (1 + \beta).2 \text{ k}\Omega}$$

$$I_{\rm B} = \frac{5 - 0.7}{200 \, \text{k}\Omega + (1 + 100).2 \, \text{k}\Omega}$$
$$= \frac{4.3 \, \text{V}}{402 \, \text{k}\Omega} = 10.7 \, \mu\text{A}$$

$$I_{C} = \beta I_{B}$$

$$= (100).(10.7 \ \mu A)$$

$$= 1.07 \ mA$$

$$I_{E} = (\beta + 1)I_{B}$$

$$= 1.0807 \ mA$$
Now we find V_{CE} from output circuit

$$10 - I_{C} \cdot 3 k\Omega - I_{E} \cdot 2 k\Omega = V_{CE}$$
$$\Rightarrow V_{CE} = 4.63 \text{ V} > V_{CE(sat)}$$

∴ Q1 is in active mode and the assumption is true we can also verify that the BC junction is reverse biassed which is required so that the BJT operates in active mode

- Solution:
- 1) Since BE junction is forward biased ==> Q1 can be either in Active (Linear) or Saturation mode
 3kG
- Assume it is in saturation mode:

Biasing

Biasing: Applying DC voltages to a transistor in order to establish fixed level of voltage and current. For Amplifier (active/Linear) mode, the resulting dc voltage and current establish the operation point to turn it on so that it can amplify AC signals.

Operating Point

The DC input establishes an operating or *quiescent point* called the *Q-point*.

The Three Operating Regions

Active or Linear Region Operation

- Base–Emitter junction is forward biased
- Base–Collector junction is reverse biased

Cutoff Region Operation

• Base–Emitter junction is reverse biased

Saturation Region Operation

- Base–Emitter junction is forward biased
- Base–Collector junction is forward biased

DC Biasing Circuits

- 1. Fixed-bias circuit
- 2. Emitter-stabilized bias circuit
- 3. DC bias with voltage feedback
- 4. Voltage divider bias circuit

1)Fixed Bias Configuration

The Base-Emitter Loop

From Kirchhoff's voltage law for Input:

 $+V_{CC}-I_BR_B-V_{BE}=0$

Solving for base current:

$$I_{\rm B} = \frac{V_{\rm CC} - V_{\rm BE}}{R_{\rm B}}$$

Choosing RB will establish the required level of IB

Collector-Emitter Loop

Collector current:

$$I_{C} = \beta I_{B}$$

From Kirchhoff's voltage law:

 $V_{\rm CF} = V_{\rm CC} - I_{\rm C}R_{\rm C}$ $V_{\rm CF} = V_{\rm C} - V_{\rm F}$ Since $V_{E} = 0$ \longrightarrow \therefore $V_{CE} = V_{C}$ $V_{CF} = V_{CC} - I_C R_C$ Also $V_{\rm RF} = V_{\rm R} - V_{\rm F}$ $\therefore V_{\text{\tiny RE}} = V_{\text{\tiny R}}$

Saturation

When the transistor is operating in **saturation**, current through the transistor is at its *maximum* possible value.

$$I_{Csat} = rac{V_{CC}}{R_C}$$

$$V_{CE} = V_{CE(sat)} \cong 0 V$$

Load Line Analysis

The *Q*-point is the operating point where the value of R_B sets the value of I_B that controls the values of V_{CE} and I_C .

The Effect of V_{CC} on the Q-Point

The Effect of R_c on the Q-Point

The Effect of I_B on the Q-Point

Design: Fixed bias

Assume VCC = 10V, $\beta_{nominal} = 100$, $\beta_{min} = 50$, $\beta_{max} = 150$ Design for Q - point : $V_{CEQ} = 5V$, $I_{CQ} = 1mA$

Solution

Fixed bias Stability

Assume VCC = 10V, $\beta_{nominal} = 100$, $\beta_{min} = 50$, $\beta_{max} = 150$ Design for Q - point : $V_{CEQ} = 5V$, $I_{CQ} = 1mA$ Solution – continued

If $\beta = \beta_{\min} = 50$ $I_{\rm B} = 10 \,\mu A$ $I_{\rm C} = \beta I_{\rm B} = (50)(10 \,\mu {\rm A}) = 0.5 \,{\rm mA}$ $V_{CE} = V_{CC} - I_C R_C$ $V_{CEO} = 10 - (0.5 \text{ mA})(5 \text{ k}\Omega) = 7.5 \text{ V}$ If $\beta = \beta_{max} = 150$ $I_{\rm R} = 10 \,\mu A$ $I_{C} = \beta I_{B} = (150)(10 \,\mu A) = 1.5 \,mA$ $V_{CF} = V_{CC} - I_C R_C$ $V_{CEO} = 10 - (1.5 \text{ mA})(5 \text{ k}\Omega) = 2.5 \text{ V}$

2) Emitter-Stabilized Bias Circuit

Adding a resistor (R_E) to the emitter circuit stabilizes the bias circuit.

Base-Emitter Loop

From Kirchhoff's voltage law:

$$+V_{CC}-I_BR_B-V_{BE}-I_ER_E = 0$$

Since $I_E = (\beta + 1)I_B$:

$$V_{CC}-I_BR_B-V_{BE}-(\beta+1)I_BR_E=0$$

Solving for I_B :

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)R_{E}}$$

 $(\beta + 1)R_E \leftarrow$ is the emitter resistor as it appears in the base emitter loop

Base-Emitter Loop

Solving for I_F :

$$I_E = \frac{V_{CC} - V_{BE}}{\frac{R_B}{(\beta + 1)} + R_E}$$

In order to get IE almost independant of B we choose :

$$\begin{split} R_E >> \frac{R_B}{(\beta+1)} \\ \implies I_E \cong \frac{V_{CC} - V_{BE}}{R_E} \end{split}$$

Also, in order to guarantee operation in linear mode we choose $0.1 V_{CC} \le V_E < 0.2 V_{CC}$

Collector-Emitter Loop

From Kirchhoff's voltage law: $I_E R_E + V_{CE} + I_C R_C - V_{CC} = 0$ Since $I_E \cong I_C$: $V_{CE} = V_{CC} - I_C (R_C + R_E)$

Also:

$$V_E = I_E R_E$$

$$V_C = V_{CE} + V_E = V_{CC} - I_C R_C$$

$$V_B = V_{CC} - I_R R_B = V_{BE} + V_E$$

Design: Emitter Stabilization bias

Assume VCC = 10V, $\beta_{\text{nominal}} = 100, \beta_{\text{min}} = 50, \beta_{\text{max}} = 150$

Design for Q - point : $V_{CEQ} = 5V$, $I_{CQ} = 1mA$

Solution

 $= 829 \mathrm{k}\Omega$

 $-let V_{\rm F} = 0.1 V_{\rm CC}$ $V_{\rm E} = 1 V$ $I_E = \frac{V_E}{R_E} \Longrightarrow R_E = \frac{1 \text{ V}}{1.01 \text{ mA}} \cong 1 \text{ k}\Omega$ $I_{B} = \frac{V_{CC} - V_{BE}}{R_{-} + (B+1)R_{-}} \Longrightarrow$ $R_{B}I_{B} + I_{B}(\beta + 1)R_{E} = V_{CC} - V_{BE}$ $R_{B} = \frac{V_{CC} - V_{BE} - I_{B}(\beta + 1)R_{E}}{I}$ $\underline{10\!-\!0.7\!-\!10\,\mu A(100\!+\!1)1\,k\Omega}$ $10 \,\mu A$

V_{CE} = V_{CC} − I_CR_C − V_E
V_{CEQ} = 5 = 10 − 1 − I_CR_C
∴ R_C =
$$\frac{4}{1 \text{ mA}}$$
 = 4 kΩ

Emitter bias Stability

If
$$\beta = \beta_{\min} = 50$$

 $I_{B} = \frac{9.3}{829k\Omega + 51k\Omega} = 10.56 \,\mu\text{A}$
 $I_{C} = \beta I_{B} = (50)(10.56 \,\mu\text{A}) = 0.528 \,\text{mA}$
 $V_{CE} = V_{CC} - I_{C}R_{C} - V_{E}$
 $V_{CEQ} = 10 - (0.528 \,\text{mA})(4 \,\text{k}\Omega) - 1 = 6.89 \,\text{V}$

If $\beta = \beta_{max} = 150$ $I_{B} = \frac{9.3}{829k\Omega + 151k\Omega} = 9.489 \,\mu\text{A}$ $I_{C} = \beta I_{B} = (150)(9.489 \,\mu\text{A}) = 1.423 \,\text{mA}$ $V_{CE} = V_{CC} - I_{C}R_{C} - V_{E}$ $V_{CEQ} = 10 - (1.423 \,\text{mA})(4 \,\text{k}\Omega) - 1 = 3.31 \,\text{V}$

 $\label{eq:stable} \begin{array}{l} \mbox{for} \\ 50 \leq \beta \leq 150 \\ 10.56 \ \mu A \geq \ I_B \geq 9.489 \ \mu A \\ 0.528 \ m A \leq \ I_C \leq 1.423 \ m A \\ 6.89 \ V \geq \ V_{CE} \geq 3.31 \ V \\ \hdots \frac{I_{C(max)}}{I_{C(min)}} = \frac{1.423 \ m A}{0.528 \ m A} \cong 2.7 \end{array} \begin{array}{l} \mbox{Improved,} \\ \mbox{but not} \\ \mbox{very} \\ \mbox{stable} \end{array}$

Improved Biased Stability

Stability refers to a condition in which the currents and voltages remain fairly constant over a wide range of temperatures and transistor Beta (β) values.

Adding R_E to the emitter improves the stability of a transistor.

Saturation Level

The endpoints can be determined from the load line.

V_{CEcutoff}:
$$V_{CE} = V_{CC}$$

 $I_{C} = 0 \text{ mA}$
 $I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$

3) DC Bias With Voltage Feedback

Another way to improve the stability of a bias circuit is to add a feedback path from collector to base.

In this bias circuit the Q-point is only slightly dependent on the transistor beta, β .

Base-Emitter Loop

From Kirchhoff's voltage law:

$$V_{CC} - I.R_{L} - I_{B}R_{B} - V_{BE} = 0$$
$$I = I_{C} + I_{B}$$
$$I_{C} = \beta I_{B}$$

Solving for I_B :

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{L}(\beta + 1) + R_{B}}$$
$$V_{CC} = I.R_{L} + V_{CE}$$
$$I = I_{C} + I_{B}$$
$$V_{CE} = V_{CC} - (I_{C} + I_{B})R_{L}$$

suppose $\beta \uparrow$, $I_B \downarrow$, $I_C = \uparrow \beta . I_B \downarrow \cong const$ there is some kind of compensation effect

Design: Voltage feedback bias

Assume VCC = 10V, $\beta_{nominal} = 100$, $\beta_{min} = 50$, $\beta_{max} = 150$ Design for Q - point : $V_{CEQ} = 5V$, $I_{CQ} = 1mA$ Solution $R_L = \frac{V_{CC} - V_{CE}}{I_C + I_B} = \frac{10 - 5}{1mA + \frac{1mA}{100}}$ $= 4.95 \text{ k}\Omega$ $I_B = \frac{V_{CC} - V_{BE}}{R_L(\beta + 1) + R_B}$ $\therefore R_B = 430 \text{ k}\Omega$

If
$$\beta = \beta_{min} = 50$$

 $I_{B} = 0.013627 \text{ mA}$
 $I_{C} = 0.68 \text{ mA}$
If $\beta = \beta_{max} = 150$
 $I_{B} = 0.00793 \text{ mA}$
 $I_{C} = 1.19 \text{ mA}$

Vcc

Rв

Base-Emitter Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_{L}}$$

4) Voltage Divider Bias

This is a very stable bias circuit.

The currents and voltages are nearly independent of any variations in β if the circuit is designed properly

Approximate Analysis

Where $I_B \ll I_1$ and $I_1 \cong I_2$:

$$\mathbf{V}_{\mathrm{B}} = \frac{\mathbf{R}_{1}\mathbf{V}_{\mathrm{CC}}}{\mathbf{R}_{1} + \mathbf{R}_{2}}$$

$$V_E = V_B - V_{BE}$$
$$I_{E(approximate)} = \frac{V_E}{R_E} = \frac{V_B - V_{BE}}{R_E}$$

From Kirchhoff's voltage law:

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$
$$I_E \cong I_C$$
$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$

Here we got Ic independent of β which provides good Q-point stability

Exact Analysis

We must try to make I_B as close as possible to zero

Thevenin Equivalent circuit for the circuit left of the base is done $V_{th} = \frac{R_1 V_{CC}}{R_1 R_2}$

$$R_{1} + R_{2}$$

 $R_{th} = R_{1} / / R_{2} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$

$$\mathbf{V}_{\mathrm{th}} = \mathbf{I}_{\mathrm{B}}\mathbf{R}_{\mathrm{th}} + \mathbf{V}_{\mathrm{BE}} + \mathbf{I}_{\mathrm{E}}\mathbf{R}_{\mathrm{E}}$$

but
$$I_{B} = \frac{I_{E}}{\beta + 1}$$

 $\therefore I_{E(exact)} = \frac{V_{th} - V_{BE}}{\frac{Rth}{\beta + 1} + R_{E}}$

Exact Analysis

$$\therefore \mathbf{I}_{\mathrm{E(exact)}} = \frac{\mathbf{V}_{\mathrm{th}} - \mathbf{V}_{\mathrm{BE}}}{\frac{\mathrm{Rth}}{\beta + 1} + R_{E}}$$

if we compare to approximate solution

$$I_{E(approximate)} = \frac{V_B - V_{BE}}{R_E}$$

 \Rightarrow we must make the quantity $\frac{\text{Rth}}{\beta+1} \ll R_E$

Here we got Ic independent of $\boldsymbol{\beta}$

$$\therefore \quad \text{Rth} << (\beta+1)R_E$$

as a rule let Rth $<< \frac{(\beta+1)R_E}{10}$

or

Rth <<
$$\frac{\beta R_E}{10}$$

Design: Voltage Divider bias

 C_2

Assume VCC = 10V, $\beta_{\text{nominal}} = 100$, $\beta_{\text{min}} = 50$, $\beta_{\text{max}} = 150$ Design for Q - point : $V_{CEO} = 5V$, $I_{CO} = 1mA$ V_{CC} *Solution* 1) let $V_{E} = 0.1 V_{CC}$ $V_{\rm F} = 1V$ $I_E = \frac{V_E}{R_E} \Longrightarrow R_E = \frac{1 \text{ V}}{1.01 \text{ mA}} \cong 1 \text{ k}\Omega$ C_1 R1 2) let Rth = $\frac{R_E \cdot \beta_{nominal}}{50} = \frac{1 \, k\Omega \cdot 100}{50} = 2 \, k\Omega$ 3) V -R I + I R + V

S)
$$\mathbf{v}_{cc} = \mathbf{K}_{c}\mathbf{I}_{c} + \mathbf{I}_{E}\mathbf{K}_{E} + \mathbf{v}_{cE}$$

 $V_{cEQ} = 5$
∴ $\mathbf{R}_{c} = \frac{V_{cc} - V_{cE} - V_{E}}{1mA} = \frac{10 - 5 - 1}{1mA} = 4 k\Omega$

Design: Voltage Divider bias

Voltage Divider bias Stability

If
$$\beta = \beta_{min} = 50$$

 $I_{c} = 0.982 \text{ mA}$
If $\beta = \beta_{max} = 150$
 $I_{c} = 1.0069 \text{ mA}$

for

Very good Q-point stability

Voltage Divider Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_{C} + R_{E}}$$

Load Line Analysis

Cutoff:

$$V_{CE} = V_{CC}$$
$$I_C = 0 \,\mathrm{mA}$$

Saturation:

$$I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$$
$$V_{CE} = 0 \text{ V}$$

PNP Transistors

The analysis for *pnp* transistor biasing circuits is the same as that for *npn* transistor circuits. The only difference is that the currents are flowing in the opposite direction.

DC and AC Load Lines

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}} = \frac{18 - 0.65}{576 \text{ k}\Omega} = 30 \text{ }\mu\text{A}$$
$$I_{C} = \beta I_{B} = 3 \text{ }\text{m}\text{A}$$
$$V_{CE} = V_{CC} - I_{C}R_{C} = 18 - (3\text{ }\text{m}\text{A})(3\text{ }\text{k}\Omega)$$
$$= 9 \text{ }\text{V}$$

AC Load Line

Since we have dc and ac quantities,

let us define the notation

total DC ac $V_{BE}(t) = V_{BE} + v_{be}$ $V_{CE}(t) = V_{CE} + v_{ce}$ $I_C(t) = I_C + i_c$ $I_B(t) = I_B + i_b$

$$v_{ce} = -R_{ac} \cdot i_c$$

where $R_{ac} = R_c // R_L$

is the ac resistance seen from collector terminal+ resistance seen from emitter terminal

AC Load Line

Design Criteria

- In order to have the amplifier to amplify an input ac signal without distortion (by going into saturation or cut-off)
- We must choose the Q-point in the middle of ac load line

$$I_{CQ} = \frac{1}{2} I_C(t)_{max}$$
$$V_{CEQ} = \frac{1}{2} V_{CE}(t)_{max}$$

$$2I_{CQ} = I_C(t)_{max}$$

$$2I_{CQ} = I_{CQ} + \frac{V_{CEQ}}{R_{ac}}$$
$$\therefore I_{CQ} = \frac{V_{CEQ}}{R_{ac}}$$

DC Analysis

 $V_{CC} = V_{CE} + I_C R_C$ define $R_{dc} = R_{C}$ $V_{CC} = V_{CE} + I_C R_{dc}$

at the Q - point

 $V_{CC} = V_{CEO} + I_{CO}R_{dc}$

For maximum Symmetrical swing

DC Analysis

Also

Symmetrical swing

Design Example

ii

Design the amplifier for maximum symmetrical swing of the collector current? Find the Q-point? Find the required Value of RB? Draw AC and DC load lines What is the power dissipation of the transistor at the Q-point?

Solution

Maximum Symmetrical Swing (peak - peak) of Ic

$$I_{Cp-p} = 2I_{CQ} = 12 \text{ mA}$$

 $V_{CE}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 6 \text{ mA.1 } \text{ k}\Omega + 6 = 12 \text{ V}$

Example -Continued

Analysis Example

ii

Given RB=50 k Ω Find the maximum collector current swing and the Q-point? Draw AC and DC load lines What is the power dissipation of the transistor at the Q-point?

Maximum Swing (peak) of Ic

$$I_{\rm CM} \neq I_{\rm CQ}, \Longrightarrow I_{\rm CM} = 4 \, {\rm mA}$$

Maximum Symmetrical Swing (peak - peak) of Ic

$$I_{Cp-p} = 2I_{CM} = 8 \text{ mA}$$

Solution

Graphical Analysis

- Can be useful to understand the operation of BJT circuits.
- First, establish DC conditions by finding I_B (or V_{BE})
- Second, figure out the DC operating point for I_C

operation

– What happens if R_c is larger or smaller?

Graphical Analysis

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

$$I_{C(sat)} = \frac{5}{0.82 \text{ k}\Omega} = 6.1 \text{ mA}$$
$$Vo = V_{CE(sat)} \cong 0.2 \text{ V}$$

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

For Vi = 0V $I_B = 0$ $I_C = 0$ $V_{CE} = V_{CC}$ \therefore BJT is in Cut - off Mode & Vc = $V_{CE(cut0ff)} = V_{CC} = 5V$